
Deep Learning: A Technical 
Overview

Mustafa Mustafa
NERSC

@mustafa240m

GPUs for Science Day
July 2019, Berkeley Lab

https://twitter.com/mustafa240m


@mustafa240m 2

Deep Learning is powering many recent technologies
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https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/


@mustafa240m

What can Deep Learning do?

4Diagram source: http://www.cognub.com/index.php/cognitive-platform/

http://www.cognub.com/index.php/cognitive-platform/


@mustafa240m

Deep Learning is a new programming paradigm, Software 2.0
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“It turns out that a large portion of 
real-world problems have the property 
that it is significantly easier to 
collect the data (or more generally, 
identify a desirable behavior) than 
to explicitly write the program.” 

-- Andrew Karpath, 
https://medium.com/@karpathy/software-2-0-a64152b37c35

https://medium.com/@karpathy/software-2-0-a64152b37c35
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Deep Learning is powered by Deep Neural Networks
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Why do Neural Networks finally work now?
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1) Data: large curated datasets 2)  GPUs: linear algebra accelerators

3) Algorithmic advances: optimizers, regularization, normalization … etc.
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What are Deep Neural Networks?

Long story short: 

“A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent to 
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios 
Gavves
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Deep Forward Neural Networks (DNNs)
The objective of NNs is to approximate a function:

The NN learns an approximate function                          with parameters W. This 
approximator is hierarchically composed of simpler functions 
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Deep Forward Neural Networks (DNNs)
The objective of NNs is to approximate a function:

The NN learns an approximate function                          with parameters W. This 
approximator is hierarchically composed of simpler functions 

A common choice for the atomic functions is an affine transformation followed by a 
non-linearity (an activation function           ):
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Activation functions
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Activation functions
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Deep Forward Neural Networks (DNNs)
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Deep Forward Neural Networks (DNNs)
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Animation adapted from: youtube.com/watch?v=aircAruvnKk&feature

https://www.youtube.com/watch?v=aircAruvnKk&feature=youtu.be
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Cost function & Loss
To optimize the network parameters for the task at hand we build a cost function on 
the training dataset:
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Cost function & Loss
To optimize the network parameters for the task at hand we build a cost function on 
the training dataset:

Most NNs are trained using a maximum likelihood (i.e. find the parameters that 
maximize the probability of the training dataset):
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Gradient Descent
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Gradient descent is the dominant method to 
optimize networks parameters θ to minimize 
loss function L(θ). 

The update rule is (α is the “learning rate”):

The gradient is typically averaged over a 
minibatch of examples in minibatch 
stochastic gradient descent.

θ* θ

Loss
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Gradient Descent
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Gradient descent is the dominant method to 
optimize networks parameters θ to minimize 
loss function L(θ). 

The update rule is (α is the “learning rate”):

The gradient is typically averaged over a 
minibatch of examples in minibatch 
stochastic gradient descent.

θ* θ

Loss
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Cost function & Loss
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Training Step

Lo
ss

Fig. credit: http://cs231n.github.io/neural-networks-3/
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Stochastic Gradient Descent variants
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Gradient descent can get trapped in the 
abundant saddle points, ravines and 
local minimas of neural networks loss 
functions.

VGG-56 loss landscape: arXiv:1712.09913

https://arxiv.org/abs/1712.09913
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Stochastic Gradient Descent variants
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Gradient descent can get trapped in the 
abundant saddle points, ravines and 
local minimas of neural networks loss 
functions.

To accelerate the optimization on such 
functions we use a variety of methods:

● SGD + Momentum
● Nestrov
● AdaGrad
● RMSProp
● …
● Adam

The generalization of networks trained with adaptive 
optimizers (e.g. Adam) has been questioned in many 
recent studies. SGD + Momentum is still used for many 
state-of-the-art networks (e.g. ResNet variants).
For example, arXiv:1711.05101

http://arxiv.org/abs/1711.05101
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Convolutional Neural Networks (CNNs)

CNNs implement the convolution 
operation over input. 

22Fig. credit: goo.gl/4Qgn5U

https://goo.gl/4Qgn5U
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Convolutional Neural Networks (CNNs)

CNNs implement the convolution 
operation over input. 

CNNs are translation equivariant by 
construction.

CNNs achieve: sparse connectivity, 
parameter sharing and translation 
equivariance.
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Sliding convolution kernel with 
size 3x3 over an input of 7x7.

Fig. credit: github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic
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Let us put it all together: a typical CNN network architecture
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A schematic of VGG-16 Deep 
Convolutional Neural Network 
(DCNN) architecture trained on 
ImageNet (2014 ILSVRC winner)
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AlexNet: the onset of Deep Learning winning streak 
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mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models  vision03.csail.mit.edu/cnn_art/index.html

http://vision03.csail.mit.edu/cnn_art/index.html


@mustafa240m

The Revolution (or revelation) of Depth
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What are Deep Neural Networks?

Long story short: 

“A family of parametric, non-linear and hierarchical representation learning 
functions, which are massively optimized with stochastic gradient descent to 
encode domain knowledge, i.e. domain invariances, stationarity.” -- Efstratios 
Gavves
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Fully connected neural networks
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Animation adapted from: youtube.com/watch?v=3JQ3hYko51Y&feature=youtu.be

https://www.youtube.com/watch?v=3JQ3hYko51Y&feature=youtu.be
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Convolutional Neural Networks (CNNs)
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Animation adapted from: youtube.com/watch?v=3JQ3hYko51Y&feature=youtu.be

https://www.youtube.com/watch?v=3JQ3hYko51Y&feature=youtu.be
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GPUs vs. CPUs
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Cores Clock 
speed

Memory Memory 
bandwidth

Price Peak perf.

CPU 
(Intel Core 
i7-7700k)

4 4.2 GHz System RAM ~35 GB/s ~$350 ~540 GFLOPs 
FP32

GPU
(Nvidia RTX 
2080 Ti)

3584 1.6 GHz 11 GB GDDR6 616 GB/s ~$1200 ~13.4 TFLOPs 
FP32

Modified version of comparison made in CS231n cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf

- CPU have less but more powerful cores, GPU have many “mini”-cores great 
for parallel computations of linear algebra/neural networks

- GPU have much higher memory bandwidth, great for shuffling big tensors
- GPU memory is bandwidth optimized while CPU are latency optimized

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf
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GPUs vs. CPUs
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GPUs vs. CPUs
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Figure from CS231n cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf

Unfair comparison to unoptimized CPU primitives, optimized primitives are 5-10x faster 

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf
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GPUs vs. CPUs
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Figure from CS231n cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf

cuDNN library provides GPU accelerated deep learning primitives

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture06.pdf
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Applications of Deep Learning
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Autoencoders
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Unsupervised diagnostics using autoencoders

37



@mustafa240m

Applications of DNNs: Classification and Segmentation
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Applications of DNNs: Classification and Segmentation
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Climate Segmentation Results
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Collaboration between NERSC, NVIDIA, UCB, OLCF
Pixel-level classification of extreme weather phenomena

3 classes: atmospheric river, tropical cyclone, background

Exascale Deep Learning for Climate Analytics: Thorsten Kurth et al. arXiv:1810.01993

https://arxiv.org/abs/1810.01993
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Climate Segmentation Results

41Exascale Deep Learning for Climate Analytics: Thorsten Kurth et al. arXiv:1810.01993

https://arxiv.org/abs/1810.01993
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Applications of DNNs: Generative Adversarial Networks
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Applications of DNNs: Generative Adversarial Networks
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CosmoGAN: generating high-fidelity cosmology maps
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Validation Generated

GANs generated maps exhibit the 
same gaussian and non-gaussian 
structures as full simulations. 

CosmoGAN: Mustafa, Bard, Bhimji, Lukic, Al-Rfou, Kratochvil, arXiv:1706.02390

https://arxiv.org/abs/1706.02390
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CaloGAN: Particle Calorimeter Showers

45CaloGAN: Paganini, de Oliveira, Nachman Phys. Rev. Lett. 120, 042003

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.042003

